Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 24, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available November 26, 2025
-
Neat, densely packed, and highly aligned carbon nanotube fibers (CNTFs) have appealing room-temperature axial thermal conductivity (k) and thermal diffusivity (α) for applications in lightweight heat spreading, flexible thermal connections, and thermoelectric active cooling. Although CNTFs are regularly produced from different input carbon nanotubes (CNTs), prior work has not quantified how the CNT molecular aspect ratio r (i.e., molecular length-to-diameter ratio) influences k and α in well-aligned, packed CNTFs. Here, we perform self-heated steady-state and three-omega thermal measurements at room temperature on CNTF suspended in vacuum. Our results show that k increases from 150 to 380W/mK for viscosity-averaged molecular aspect ratios increasing from r=960 to 5600 and nanotube diameters of ∼2 nm, which we attribute to the effects of thermal resistances between CNT bundles. CNTFs made with varying volume fraction ϕ of constituent high-r and low-r CNT have properties that fall within or below the typical macroscopic rule-of-mixtures bounds. The thermal diffusivity α scales with k, leading to a sample-averaged volumetric heat capacity of 1.5±0.3MJ/m3K. This work's findings that fibers made from longer CNT have larger k and α at room temperature motivate further investigation into thermal transport in solution-spun CNTF.more » « less
-
Creating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to agfactor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices.more » « less
-
Abstract Boron nitride nanotubes (BNNTs) are emerging nanomaterials with analogous structures and similarly impressive mechanical properties to carbon nanotubes (CNTs), but unique chemistry and complimentary multifunctional properties, including higher thermal stability, electrical insulation, optical transparency, neutron absorption capability, and piezoelectricity. Over the past decade, advances in synthesis have made BNNTs more broadly accessible to the nanomaterials and other research communities, removing a major barrier to their utilization and research. Therefore, the field is poised to grow rapidly and see the emergence of BNNT applications ranging from electronics to aerospace materials. A key challenge, that is being gradually overcome, is the development of manufacturing processes to make “neat” BNNT materials. This overview highlights the history and current status of the field, providing both an introduction to this Focus Issue—BNNTs: Synthesis to Applications—as well as a perspective on advances, challenges, and opportunities for this emerging material. Graphical abstractmore » « less
An official website of the United States government
